Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
China Journal of Chinese Materia Medica ; (24): 211-219, 2023.
Article in Chinese | WPRIM | ID: wpr-970516

ABSTRACT

Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.


Subject(s)
Humans , Glioblastoma/genetics , Bromodeoxyuridine/therapeutic use , Signal Transduction , Proto-Oncogene Proteins c-myc/metabolism , Agar , Cell Proliferation , Cell Line, Tumor , Apoptosis , Jumonji Domain-Containing Histone Demethylases/metabolism
2.
China Journal of Chinese Materia Medica ; (24): 2373-2391, 2022.
Article in Chinese | WPRIM | ID: wpr-928117

ABSTRACT

Morus alba, a traditional economic crop, is also a significant medicinal plant. The branches(Mori Ramulus), leaves(Mori Folium), roots and barks(Mori Cortex), and fruits(Mori Fructus) of M. alba are rich in chemical components, such as alkaloids, flavonoids, flavanols, anthocyanins, benzofurans, phenolic acids, and polysaccharides, and possess hypoglycemic, hypolipidemic, anti-inflammatory, anti-tumor, anti-microbial, liver protective, immunoregulatory, and other pharmacological activities. This study analyzed the sources, classification, and functions of the main chemical components in M. alba and systematically summarized the latest research results of essential active components in M. alba and their pharmacological effects to provide references for in-depth research and further development as well as utilization of active components in M. alba.


Subject(s)
Anthocyanins , Flavonoids/pharmacology , Morus , Plant Extracts/pharmacology , Plant Leaves
3.
China Journal of Chinese Materia Medica ; (24): 6520-6529, 2021.
Article in Chinese | WPRIM | ID: wpr-921812

ABSTRACT

Glioblastoma is the most common intracranial primary malignant tumor, which leads to the poor quality of life of patients and has a high recurrence rate. Chemotherapy is a vital part in the treatment of this disease. Tetrandrine(Tet) is an active ingredient extracted from the root of the Chinese medicinal plant Stephania tetrandra, which has been proved with a wide range of pharmacological effects including anti-tumor. However, there are few studies regarding the effect of Tet on glioma. In this study, MTT and BrdU assays were employed to detect the effect of Tet on the proliferation of LN229 glioblastoma cells; flow cytometry was used to analyze the cycle distribution and apoptosis; plate cloning assay and soft agar colony formation assay were performed to study the colony formation ability of LN229 cells exposed to Tet; scratch assay and Transwell assay were conducted to detect the ability of migration and invasion; Western blot was adopted to the exploration of the molecular mechanism. The MTT and BrdU assays showed that Tet inhibited the proliferation of LN229 cells in a time-and dose-dependent manner. The plate cloning assay and soft agar colony formation assay showed that Tet weakened the colony formation of LN229 cells in vitro; cytometry assay showed that Tet blocked cells in the G_1 phase and promoted cell apoptosis; scratch and Transwell assays proved that Tet inhibited the migration and invasion of LN229 cells; Western blot results showed that Tet down-regulated the expression levels of CDK2, CDK6, cyclin D1, cyclin E1, snail, slug, vimentin, and N-cadherin, while up-regulated the level of E-cadherin. The results indicate that Tet has a certain inhibitory effect on the proliferation, migration, and invasion of LN229 glioblastoma cells, and such effect may be related to the participation of Tet in the regulation of c-Myc/p27 axis and snail signaling pathway.


Subject(s)
Humans , Apoptosis , Benzylisoquinolines , Cell Line, Tumor , Cell Movement , Cell Proliferation , Glioblastoma/genetics , Quality of Life
4.
China Journal of Chinese Materia Medica ; (24): 772-778, 2018.
Article in Chinese | WPRIM | ID: wpr-771669

ABSTRACT

Glioblastoma is a common brain tumor and the overall survival rate of the patients is very low, so it is an effective way to develop the potential chemotherapy or adjuvant chemotherapy drugs in glioblastoma treatment. As a well-known antimalarial drug, artesunate(ARTs) has clear side effects, and recently it has been reported to have antitumor effects, but rarely reported in glioblastoma. Different concentrations of ARTs were used to treat the glioblastoma cells, and then the inhibitory effect of ARTs on glioblastoma proliferation was detected by MTT assay; Ki67 immunofluorescence assay was used to detect the proliferation of cells; Soft agar experiment was used to explain the clonal formation abilities ; Flow Cytometry was used to detect the cell cycle; and Western blot assay was used to determine the expression of key cell cycle protein. MTT assay results indicated that ARTs-treated glioblastoma cell A172, U251, U87 were significantly inhibited in a time-and-dose dependent manner as compared to the control group(DMSO treatment group). Soft agar experiment showed that ARTs could significantly reduce the clonal formation ability of glioblastoma. Furthermore, Flow cytometry analysis showed that ARTs could obviously increase the cell proportion in G₀/G₁ phase and reduce the cell proportion in S phase. Western blot results showed that the expressions of cell cycle-related proteins CDK2, CDK4, cyclin D1 and cyclin B1 were all obviously down-regulated. Above all, ARTs may inhibit the proliferation of glioblastoma cells by arresting cell cycle in G₀/G₁ phase through down-regulating the expression of CDK2, CDK4, cyclin D1, cyclin B1. These results may not only provide a novel method for rediscovering and reusing ARTs but also provide a new potential drug for treating glioblastoma.


Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Apoptosis , Artesunate , Pharmacology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Cyclin B1 , Metabolism , Cyclin D1 , Metabolism , Cyclin-Dependent Kinase 2 , Metabolism , Cyclin-Dependent Kinase 4 , Metabolism , Glioblastoma , Drug Therapy , Pathology
5.
China Journal of Chinese Materia Medica ; (24): 1990-1997, 2018.
Article in Chinese | WPRIM | ID: wpr-690684

ABSTRACT

The 1-DNJ named 1-deoxynojirimycinis (2R,3R,4R,5S)-2-(hydroxymethyl) piperidine-3,4,5-triol, which is the nature active components existingin mulberryresources including leaves, stems, roots and silkworm larva, silkworm chrysalis, etc.The 1-deoxynojirimycin is a polyhydroxylated piperidine alkaloid, which was first found in Streptomyces as an antibiotic. Then the Japanese researchers isolated it from the mulberry root. 1-DNJ can inhibit postprandial hyperglycemia by suppressing intestinal alpha glucosidase. Therefore, 1-DNJ is often used to treat treating diabetes and complicating disease and to prevent obesity and weight-related disorders. With the development of the researches, 1-deoxynojirimycin and its derivtiv was discovered to possess anti-hyperglycemic, anti-virus, anti-tumor functions and so on. Therefore,based on our current studythe existing knowledge on source, technique preparation process, pharmacokinetics, bioactivties,and in silico target fishing of 1-DNJ were summarized, so that the researchers may use it to explore future perspective of research on 1-DNJ.

6.
China Journal of Chinese Materia Medica ; (24): 2524-2536, 2015.
Article in English | WPRIM | ID: wpr-284781

ABSTRACT

As a neuropeptide, neurotensin (NTS) is widely expressed in central and peripheral nervous system, which is mainly mediated byneurotensin receptor1 (NTSR1) to activate the related downstream signaling pathways. After summarized the function and mechanism of NTS/NTSR1 in various malignant tumors, we found that NTS/NTSR1 played essential roles during tumor initiation and development. NTS/NTSR1 regulates tumor initiation, proliferation, apoptosis, metastasis and differentiation mainly through three pathways, including IP3/Ca2+ /PKC/MAPKs pathway, MMPs/EGFR/MAPKs (PI3K/Akt) pathway, or Rho-GTPsaes and non-receptor tyrosine kinase pathway. Besides, NTS/NTSR1 is also regulated by some upstream pathways and some traditional Chinese medicine preparations and traditional Chinese medicine therapies. In this article, we summarized the function of NTS/NTSR1 and its mechanisms, and discussed the prospective in its application to clinical diagnosis and drugs targeting.


Subject(s)
Animals , Humans , Medicine, Chinese Traditional , Neoplasms , Neurotensin , Chemistry , Physiology , ErbB Receptors , Physiology , Receptors, Neurotensin , Chemistry , Physiology , Signal Transduction , Physiology , rhoA GTP-Binding Protein , Physiology
7.
China Journal of Chinese Materia Medica ; (24): 2838-2845, 2014.
Article in Chinese | WPRIM | ID: wpr-327881

ABSTRACT

The real sanghuang is a new species belonging to the Inonotus, which is commonly used for cancer treatment and human immune system improvement. This review summarized the progress on the studies of Phellinus Quel in recent years, including its taxonomy status, bioactive components, pharmacodynamics, separation and purification technologies. In addition, some related problems and perspectives were also discussed.


Subject(s)
Animals , Humans , Basidiomycota , Chemistry , Classification , Medicine, Chinese Traditional , Methods
SELECTION OF CITATIONS
SEARCH DETAIL